If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+80Y+6
We move all terms to the left:
-(-16Y^2+80Y+6)=0
We get rid of parentheses
16Y^2-80Y-6=0
a = 16; b = -80; c = -6;
Δ = b2-4ac
Δ = -802-4·16·(-6)
Δ = 6784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6784}=\sqrt{64*106}=\sqrt{64}*\sqrt{106}=8\sqrt{106}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-8\sqrt{106}}{2*16}=\frac{80-8\sqrt{106}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+8\sqrt{106}}{2*16}=\frac{80+8\sqrt{106}}{32} $
| 3x+20+35x=180 | | -x/6-2=0 | | -50=4x+38 | | 5(6^2x)=35 | | 15=-5+8(v+7) | | 15=-3x-15 | | 8x-3=10x-6 | | 9f-5f=-27 | | (8x-12)=(7x+14) | | -3(7-5s)=-18 | | -4(2x-5)=3(8-2x) | | 13t-5t-6t-1=9 | | 13c-3c-7c=3 | | -10x-40=-100 | | 12a-2a=20 | | w-w+4w+4w=16 | | 15g+3g-17g=10 | | 40=0.2x | | 2u-u+u+2u-3u=18 | | 3y-12y=8 | | 19x-3x-x-12x-x=6 | | 6(x+4)-(3x+24)=-9 | | -7+4(1-6z)=15 | | 90=30x/3 | | (3+1)x=22 | | 15=3u/4u | | 3x-7=5x20 | | 4u-19u-13=-73 | | 5x+2x+5x-7x=5 | | 5(x-7=-35 | | 4.16-0.17x=1.92+0.15x | | 20x-18x=20 |